Complex Analysis Study Guide Test 1 (Draft!!)

The test is Friday February 17th. No calculators. Closed notes.

Material for test 1:

- Complex numbers: know what the complex plane is, how to describe complex numbers, and how to do arithmetic on them.
- Be familiar with the three forms of representing complex numbers, and be able to switch between them when necessary. (Of course it is assumed you know the unit circle)
- Be able to find roots and powers of complex numbers. Understand why roots are multidefined and how to find all the values.
 - Understand how this relates to roots of unity. (Of course you must know what roots of unity are)
- Be familiar with how to extend notions on \mathbb{R} to \mathbb{C} , such as:
 - Limits -> Complex limits
 - Derivatives -> Complex derivatives
 - Differentiable function -> Analytic function
 - Intervals -> Regions
 - Absolute value -> Complex absolute value
 - Continuity -> Complex continuity
 - Functions -> Multivalued functions
- Be familiar with important complex functions:
 - The exponential function e^z
 - Complex trig functions: sin(z), cos(z)
 - Hyperbolic trig functions: $\sinh(z)$, $\cosh(z)$
 - o Polynomials
 - Rational functions
 - The complex logarithm
- Understand the idea of stereographic projection and compactification

Practice problems

Below are a selection of problems from our textbooks that looks like reasonable problems that could appear on a test. An "easy" problem means that you should be able to jump right in and start solving it immediately. A "medium" problem means it is expected that you'll need to think a little before solving the problem. A "hard" problem means you'll need to think a lot and maybe work out some details before solving the problem.

Easy Problems

- 1. Let $z_1 = 2 + i$, $z_2 = 3 2i$. Find $|3z_1 4z_2|$. (1.2.a)
- 2. Express $-\sqrt{6} i\sqrt{2}$ in both trigonometric form and exponential form. (1.16.c)
- 3. Find $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^{10}$. (1.26.c)
- 4. Solve $z^5 = -32$ (1.28)
- 5. Let z = x + iy where $x, y \in \mathbb{R}$. Show that $|e^z| = e^x$. (2.8b)
- 6. Divide $3z^4 2z^3 + 8z^2 2z + 5$ by z i. (Might be too long for a test; haven't worked it out myself)
- 7. Find $\lim_{z \to i} \frac{3z^4 2z^3 + 8z^2 2z + 5}{z i}$. (2.25)
- 8. Find $\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2-2z+4}$. (2.29b)
- 9. Find $\frac{d}{dz}(z^3 2z)$ (3.1)
- 10. Find $\frac{d}{dz}\cos^2(2z+3i)$ (3.17)
- 11. Determine where $f(z) = \frac{z}{z^2+4}$ is singular. (3.25)
- 12. Show that $f(z) = \sin(2z)$ is analytic on the entire complex plane. (3.46)
- 13. Show that $\text{Re}(z) \le |z|$ (R 1.4.d)
- 14. Sketch the region given by $|2z 4| \le 2$ (R1.2.2.d)
- 15. An analytic function f(z) = u(x, y) + iv(x, y) has $u(x, y) = 3x^2y y^3$. Find f(z) as precisely as you can. (R2.1.2.a)

Medium problems

- 1. Graph $\left|\frac{z-3}{z+3}\right| = 2$. (1.48)
- 2. Solve $z^2(1-z^2) = 16$ (1.50)
- 3. Show that the function $f(z) = z^{\frac{1}{5}}$ is multivalued. (2.6)
- 4. Derive the derivative of $f(z) = \sin(z)$. (3.12a)
- 5. Given the power series expansion for $\cosh(z)$, find the power series expansion for $\frac{\cosh(z)-1}{z^2}$ (R1.2.5)
- 6. What does the unit square in the first quadrant map to under $f(z) = \frac{1}{2}$? (R1.2.7)
- 7. Show that f(z) = Im(z) is not analytic. (R1.3.5)
- 8. Use the series expansion of e^x to show that $\lim_{z\to 0} e^z (1+z) = 0$. (R1.3.9)
- 9. Find all branch points for the multidefined function $f(z) = \frac{1}{(z-1)^{\frac{1}{2}}}$ (R2.2.1.a)
- 10. Find a branch cut for the multidefined function $f(z) = 1/(z-1)^{\frac{1}{2}}$ (R2.2.1.a)
- 11. Solve $3 + 2e^{z-i} = 1$ for z. (R2.2.3.b)

Hard problems

- 1. Find all branch points for the multidefined function $f(z) = \log((z-1)(z-2))$. (R2.3.2.a)
- 2. Find a branch cut for the multidefined function $f(z) = \log((z-1)(z-2))$. (R2.3.2.a)